US009342274B2

a2z United States Patent (10) Patent No.: US 9,342,274 B2
Lucco et al. (45) Date of Patent: May 17, 2016
(54) DYNAMIC CODE GENERATION AND g%z;,ggg g} 15;588} FDr_fli%_ey etal.
MEMORY MANAGEMENT FOR 6421720 Bl 7/2002 Pziltgrllgghhaén;t al.
COMPONENT OBJECT MODEL DATA 6,463,534 Bl 10/2002 Geiger et al.
CONSTRUCTS .
(Continued)
(75) Inventors: Steven Lucco, Bellevue, WA (US);
Louis Lafreniere, Seattle, WA (US); FOREIGN PATENT DOCUMENTS
Yong Qu, Sammamish, WA (US) P 11316677 11/1999
Jp 2004054330 2/2004
(73) Assignee: Microsoft Technology Licensing, LL.C, (Continued)
Redmond, WA (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this b w . I N
patent is extended or adjusted under 35 owd, “Attacking Inteoperablhty. , Jul. 29, 2009, pp. 1-84.
U.S.C. 154(b) by 638 days. (Continued)
(21) Appl. No.: 13/111,927 Primary Examiner — Duy Khuong Nguyen
(74) Attorney, Agent, or Firm —Kevin Sullivan; Kate
(22) Filed: May 19, 2011 Drakos; Micky Minhas
(65) Prior Publication Data (57) ABSTRACT
US 2012/0297360 Al Now. 22,2012 Dynamic code generation and memory management tech-
niques are provided for component object model (COM)
(51) Int.CL objects with corresponding representations in script code and
GOGF 9/44 (2006.01) native code. A browser component can receive script code
GOGF 9/50 (2006.01) including the code representing the COM object and a mar-
(52) US.CL shaling component is provided that marshals, based on a
CPC ...cccecveee GO6F 8/30 (2013.01); GO6F 9/5022 request for native code representing the COM object, the code
(2013.01); GO6F 9/443 (2013.01) representing the COM object to the native code based on a
(58) Field of Classification Search pre-constructed intermediate data structure. The pre-con-
CPC ... GO6F 8/30; GO6F 9/443; GO6F 9/5022 structed intermediate data structure, such as a virtual table, is
USPC ettt 717/103 pre-constructed based on a dynamic type representation asso-
See application file for complete search history. ciated with a prototype of the COM object and cached for
re-use by the marshaling component. Other embodiments
(56) References Cited provide finalizer support for memory management of COM

U.S. PATENT DOCUMENTS

5471,619 A 11/1995 Messina
5,805,884 A 9/1998 Sitbon et al.
6,185,567 Bl 2/2001 Ratnaraj et al.
6,272,485 Bl 8/2001 Sragner

/ ~ COM
object

SCRIPT
CODE
532

; y
534 // /

/ y /
/[WarshaTfom \ /’/ NATIVE /
/ Script to Namy / CODE I object /
/ /S 542 / s

objects having script and native world representations includ-
ing an implementation of a two-phase commit protocol that
enables efficient and conservative recycling of objects and
associated memory.

17 Claims, 12 Drawing Sheets

COM

/
/ /

/Intermedlate /
/ Data /
Structures /

f
Y

530

lling C
40

forcom /

h s

y I'__‘L_

Processor
520

MEMORY |
510

US 9,342,274 B2

Page 2
(56) References Cited 2005/0108353 A1 5/2005 Yamamoto
2005/0174974 Al 8/2005 Sonntag et al.
U.S. PATENT DOCUMENTS 2005/0177566 Al* 82005 Craigetal.ccccooo..... 707/4
2005/0187895 Al 8/2005 Paya
6,510,504 B2 1/2003 Satyanarayanan 2005/0223412 Al 10/2005 Nadalin et al.
6,546,397 Bl 4/2003 Rempell 2005/0251742 Al 112005 Mogilevsky et al.
6,567,918 Bl 5/2003 Flynn et al. 2005/0259656 Al 11/2005 Dollar et al.
6.601.233 Bl 7/2003 Underwood 2005/0268100 Al 12/2005 Gasparini et al.
6.629.123 Bl 9/2003 Hunt 2005/0278792 Al 12/2005 Ramani et al.
6686932 B2 2/2004 Rath ot al. 2006/0010134 Al 1/2006 Davis
6,717,593 Bl 4/2004 Jennings 2006/0026379 A1 2/2006 Jung
6,732,109 B2 5/2004 Lindberg et al. 2006/0053276 Al 3/2006 Lortz et al.
6,748,418 Bl 6/2004 Yoshida et al. 2006/0053293 Al 3/2006 Zager etal.
6,792,459 B2 9/2004 Elnozahy et al. 2006/0087983 Al 4/2006 Vigoureux et al.
6,842,906 Bl 1/2005 Bowman-Amuah 2006/0143688 Al 6/2006 Futoransky et al.
6,874,084 Bl 3/2005 Dobner et al. 2006/0179350 Al* 82006 Nathan ... GO6F 11/3688
6,904,453 B2 6/2005 Shuster et al. 714/38.1
6.934.757 Bl 8/2005 Kalantar et al. 2006/0218403 Al 9/2006 Sauve et al.
6,950,983 Bl 9/2005 Snavely 2006/0221941 A1 10/2006 Kishinsky et al.
6.957.439 Bl 10/2005 Lewallen 2007/0006148 Al 1/2007 Varshney
6:959:393 B2 10/2005 Hollis 2007/0050854 Al 3/2007 Cooperstein et al.
6,961,929 Bl 11/2005 Pelegri-Llopart et al. 2007/0055964 Al* 3/2007 Mirkazemi GOG6F 8/41
6,985,953 Bl 1/2006 Sandhu et al. 717/140
6,990,653 B1* 1/2006 Burdetal. 717/108 2007/0074169 Al 3/2007 Chess et al.
6.993.596 B2 1/2006 Hinton 2007/0107057 Al 5/2007 Chander et al.
7.000,107 B2 2/2006 Hewett et al. 2007/0113282 AL 5/2007 Ross
7076786 B2 7/2006 Burd ef al. 2007/0136809 Al 6/2007 Kim et al.
7.143.195 B2 11/2006 Vange 2007/0150603 A1 6/2007 Crull
7.143347 B2 11/2006 Su 2007/0162394 Al 7/2007 Zager et al.
7219329 B2 5/2007 Meijer 2007/0192494 Al 82007 Yamakawa et al.
7225225 B2 5/2007 Kuki et al. 2007/0234060 Al 10/2007 Tsubono
7.269.833 B2 9/2007 Kushnirskiy 2007/0256003 A1 11/2007 Wagoner et al.
7,293,034 B2 11/2007 Paya et al. 2007/0282951 Al 12/2007 Selimis
7.334.235 B2 2/2008 Hunt et al. 2007/0288247 Al 12/2007 Mackay
7340.604 B2 3/2008 Hewett et al. 2008/0034425 A1 2/2008 Overcash et al.
77350976 B2 4/2008 Ross et al. 2008/0059634 A1 3/2008 Commons
7437558 B2 10/2008 Fenton of al. 2008/0133540 Al 6/2008 Hubbard et al.
7458.096 B2 11/2008 Knouse et al. 2008/0235675 Al* 9/2008 Chenccoocoovviivinnn. 717/147
7467399 B2 12/2008 Nadalin et al. 2008/0263086 Al 10/2008 Klemba et al.
7469302 B2 12/2008 Whittle ot al. 2008/0298342 Al 12/2008 Appleton et al.
7487262 B2 2/2009 Cardina et al. 2008/0313648 Al 12/2008 Wang et al.
7584232 B2 9/2009 Guo 2009/0037806 Al 2/2009 Yang et al.
7730465 B2 6/2010 Sutter 2009/0048915 Al 2/2009 Chan
7,735,094 B2 6/2010 Varshney 2009/0070663 Al 3/2009 Fan et al.
7.802.238 B2 9/2010 Clinton 2009/0070869 Al 3/2009 Fan et al.
7.809.785 B2 10/2010 Appleton et al. 2009/0119769 Al 52009 Ross et al.
7.870.112 B2 1/2011 Karun et al. 2009/0125595 Al 5/2009 Maes
7912.924 Bl 3/2011 Cantrell 2009/0132713 Al 5/2009 Dutta et al.
8245049 B2 /2012 Ramani 2009/0161132 A1 6/2009 Sato
8335982 Bl 122012 Colton ef al. 2009/0183227 Al 7/2009 Isaacs et al.
8.601.278 B2 12/2013 Ramini et al. 2009/0217311 A1 8/2009 Kocyan et al.
8,646:029 B2 2/2014 Leithead et al. 2009/0328064 Al* 12/2009 Quinn, Jr. ... GOG6F 9/547
8,689,182 B2 4/2014 Leithead et al.] 719/315
8.881.101 B2 11/2014 TIeithead et al. 2010/0017461 Al 1/2010 Kokkevis et al.
8:904:474 B2 12/2014 Ieithead et al. 2010/0023884 Al 1/2010 Brichford et al.
8,918,759 B2 12/2014 Leithead et al. 2010/0100823 Al 4/2010 Ewe et al.
9,116,867 B2 8/2015 Leithead et al. 2010/0125895 Al 5/2010 Shull et al.
2001/0051885 A1 12/2001 Nardulli et al. 2010/0262780 Al 10/2010 Mahan et al.
2002/0007317 Al 1/2002 Callaghan et al. 2010/0281537 Al 11/2010 Wang et al.
2002/0116407 Al 8/2002 Negishi et al. 2010/0306642 Al 12/2010 Lowetet al.
2002/0124172 Al 9/2002 Manahan 2011/0015917 Al 1/2011 Wang et al.
2002/0161835 A1 10/2002 Ball et al. 2012/0304044 Al 11/2012 Leithead
2002/0184491 Al 12/2002 Morgan et al. 2012/0304150 Al 11/2012 Leithead
2003/0023873 Al 1/2003 Ben-Itzhak 2012/0304203 Al 11/2012 Leithead et al.
2003/0028762 Al 2/2003 Trilli et al. 2012/0304303 Al 11/2012 Leithead et al.
2003/0093666 A1 5/2003 Millen et al. 2012/0304316 Al 11/2012 Ramani et al.
2003/0159063 Al 82003 Apfelbaum et al. 2013/0042255 Al 2/2013 Leithead et al.
2003/0177285 Al 9/2003 Hunt et al. 2013/0047064 Al 2/2013 Leithead
2004/0015580 Al 1/2004 Lu et al. 2013/0047258 Al 2/2013 Leithead et al.
2004/0103200 Al 5/2004 Ross et al. 2014/0365862 Al 122014 Quetal.
2004/0128546 Al 7/2004 Blakley, I1I et al. 2015/0026661 Al 12015 Leithead et al.
2004/0139314 Al 7/2004 Cook et al. 2015/0058714 Al 2/2015 Leithead et al.
2004/0205650 Al 10/2004 Cheng 2015/0058924 Al 2/2015 Leithead et al.
2004/0210536 Al 10/2004 Gudelj et al.
2004/0260754 Al 12/2004 Olson et al. FORFEIGN PATENT DOCUMENTS
2005/0028140 Al 2/2005 Ayachitula et al.
2005/0044197 Al 2/2005 Lai P 2004164617 6/2004
2005/0050547 Al 3/2005 Whittle et al. P 2005092564 8/2005
2005/0060427 Al 3/2005 Phillips et al. P 2006099460 4/2006

US 9,342,274 B2
Page 3

(56) References Cited
FOREIGN PATENT DOCUMENTS

JP 2007047884 2/2007
JP 2007159013 6/2007
JP 2007183838 7/2007
JP 2007241809 9/2007
JP 2007241906 9/2007
WO 2005062707 7/2005
WO 2005091107 9/2005
OTHER PUBLICATIONS

Langer, “Bringing COM Technology to Alignment Software”, Nov.
2002, p. 1-16.*

Engelen, “The gSOAP Toolkit for Web Services and Peer-To-Peer
Computing Networks”, May 21, 2002, pp. 1-8.*

An Architectural View of Distributed Objects and Components;
1998.

Tierney, Luke, Connecting Lisp-Stat to COM, Jan. 10, 2000.
Reference counting, Aug. 10, 2010.

Info: Develop Microsoft Office solutions with Visual Studio .NET;
May 9, 2007.

Microsoft NET/COM Migration and Interoperability, Aug. 2001.
Examiner’s Answer to Appeal Brief, U.S. Appl. No. 13/658,668,
Aug. 1, 2014, 49 pages.

Final Office Action, U.S. Appl. No. 13/656,156, Sep. 17, 2013, 15
pages.

Final Office Action, U.S. Appl. No. 13/658,668, Jun. 18, 2013, 26
pages.

Non-Final Office Action, U.S. Appl. No. 13/656,245, Aug. 2, 2013,
16 pages.

Non-Final Office Action, U.S. Appl. No. 14/507,568, May 28, 2015,
14 pages.

Notice of Allowance, U.S. Appl. No. 13/149,582, Sep. 18, 2013, 15
page.

Notice of Allowance, U.S. Appl. No. 13/656,156, Jul. 18, 2014, 7
pages.

Notice of Allowance, U.S. Appl. No. 13/656,245, Oct. 28, 2013, 14
pages.

Second Written Opinion, Application No. PCT/US2014/040582,
Apr. 17, 2015, 8 Pages.

Notice of Allowance, U.S. Appl. No. 14/532,826, Apr. 15, 2015, 8
pages.

International Search Report and Written Opinion, Application No.
PCT/US2014/040582, Nov. 3, 2014, 15 pages.

Supplemental Notice of Allowance, U.S. Appl. No. 13/114,924, Oct.
2, 2014, 5 pages.

Wagner, et al.,” “Compartmental Memory Management in a Modern
Web Browser”, Proceedings of the International Symposium on
Memory Management, ISMM ’11, Jun. 4, 2011, 10 pages.
Examiner’s Answer to Appeal Brief, U.S. Appl. No. 13/149,645, Jul.
28, 2014, 48 pages.

Notice of Allowance, U.S. Appl. No. 13/114,924, Jun. 25, 2014, 12
pages.

Notice of Allowance, U.S. Appl. No. 13/150,877, Jul. 22, 2014, 12
pages.

Final Office Action, U.S. Appl. No. 13/150,877, Jan. 13, 2014, 18
pages.

Final Office Action, U.S. Appl. No. 13/114,924, Jan. 27, 2014, 21
pages.

“Advanced Server-Side Authentication for Data Connections in
InfoPath 2007 Web Based Forms”, http://msdn2.microsoft.com/en-
us/library/bb 787184.aspx#ip2007
AdvancedServerSide Authentication
OverviewofServerSideAuthenticationScenarios, (Sep. 2007), 10
pages.

“Coding Basics—JavaScript Native Interface (JSNI)”, Retrieved
from: <http://code.google.com/webtoolkiUdoc/1.6/
DevGuideCodingBasics.
html#DevGuideJavaScriptNativelnterface> on Jan. 28, 2011, 26

pages.

Final Office Action, U.S. Appl. No. 11/935,323 (Jul. 18, 2011), 15
pages.

Final Office Action, U.S. Appl. No. 11/942,734 (Jan. 21, 2010), 36
pages.

Final Office Action, U.S. Appl. No. 11/942,734, (Apr. 5, 2011), 45
pages.

Final Office Action, U.S. Appl. No. 11/942,734 (Sep. 13, 2010), 38
pages.

Final Office Action, U.S. Appl. No. 13/149,645, (Jun. 20, 2013), 25
pages.

“Flash Cross Domain XML”, httQ://www.w3.0org/TR/2007/WD-ac-
cess-control-20071001, (Nov. 3, 2007), 1-1.

“Microsoft Security Program: Microsoft Security Bulletin—MS98-
020—Patch Available for Frame Spoof Vulnerability”, Retrieved
from: <http://www.microsoft.com/technet/security/bulietin/ms98-
020.msQx> on Jul. 1, 2011, (Dec. 23, 1998), 2 pages.

“Microsoft Windows Internet Explorer and Other Trident Based
Browsers”, Retrieved from: <http://www.legendscrolls.co.uk/
webstandards/ie> on May 25, 2011, (May 20, 2011), 8 pages.
“Microsoft Windows Script Interfaces”, Retrieved from: <http://
msdn.microsoft.com/en-us/library/t9d4xf28(v=vs.85).aspx>on Jan.
28, 2011, (Aug. 2009), 3 pages.

“Microsoft NET/COM Migration and Interoperability”, Microsoft
Patterns & Practices; Proven Practices for Predictable Results avail-
ablethrough http://www.msdn.microsoft.com/practices/default.aspx
(2010), 15 pages.

Netscape Security News Archive, Available at <http://netscape.
lcommand.com/relnotes/>, (1997), 14 pages.

Non Final Office Action, U.S. Appl. No. 11/935,323, (Nov. 5, 2010),
11 pages.

Non-Final Office Action, U.S. Appl. No. 10/867,338 (Apr. 21, 2010),
15 pages.

Non-Final Office Action, U.S. Appl. No. 10/867,338, (Jul. 14, 2010),
15 pages.

Non-Final Office Action, U.S. Appl. No. 11/150,869 (Sep. 3, 2009),
9 pages.

Non-Final Office Action, U.S. Appl. No. 11/942,734, (Aug. 7, 2009),
31 pages.

Non-Final Office Action, U.S. Appl. No. 11/942,734 (Nov. 18,2010),
43 pages.

Non-Final Office Action, U.S. Appl. No. 11/942,734, (May 3, 2010),
32 pages.

Non-Final Office Action, U.S. Appl. No. 13/114,924 (Aug. 16,2013),
19 pages.

Non-Final Office Action, U.S. Appl. No. 13/149,582, (Jan. 7, 2013),
12 pages.

Non-Final Office Action, U.S. Appl. No. 13/149,645 (Nov. 23,2012),
19 pages.

Non-Final Office Action, U.S. Appl. No. 13/150,877, (Apr. 30,2013),
29 pages.

Non-Final Office Action, U.S. Appl. No. 13/656,156 (Apr. 2, 2013),
13 pages.

Non-Final Office Action, U.S. Appl. No. 13/656,245, (Feb. 1, 2013),
26 pages.

Non-Final Office Action, U.S. Appl. No. 13/658,668 (Jan. 3,
2013),18 pages.

“NoScript”, 2004-2007, Inform Action, retrieved from <http://
noscript.net/features> on Aug. 23, 2007, 5 pages.

Notice of Allowance, U.S. Appl. No. 10/303,113, (Dec. 10,2007), 11
pages.

Notice of Allowance, U.S. Appl. No. 10/867,338 (Apr. 12, 2012), 8
pages.

Notice of Allowance, U.S. Appl. No. 11/150,869, (Feb. 9, 2010), 8
pages.

“Protecting Commercial Secure Web Servers from Key-Finding
Threats”, nCipher, Inc., Available at <www.ncipher.com/uploads/
resources/pcws.pdf>,(1999), 12 pages.

“Randomization of HTML Tags and Embedded Scripts in Web
Pages”, Microsoft Research, 2139156v2, retrieved on Nov. 15,2007,
14 pages.

Requirement for Information, U.S. Appl. No. 10/867,338 (Oct. 26,
2010), 7 pages.

US 9,342,274 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Restriction Requirement, U.S. Appl. No. 11/150,869, (May 20,
2009), 6 pages.

Restriction Requirement, Application No. 131114 924 (May 7,
2013), 6 pages.

Restriction Requirement, U.S. Appl. No. 13/149,582, (Aug. 6,2012),
5 pages.

Restriction Requirement, U.S. Appl. No. 13/150,877 (Feb. 25, 2013),
6 pages.

Restriction Requirement, U.S. Appl. No. 13/656,156, (Feb. 21,
2013), 6 pages.

“Tagneto”, http://tagneto.blogspot.com/2006/10/ie-7-and-iframe-
apis-part-2.html, (Nov. 3, 2007), pp. 1-5.

“Update Available for “Frame Spoof” Security Issue”, Retrieved
from: <http://support.microsoft.com/default.aspx?scid=kd;en-us;
167614&sd=tech> on Apr. 21, 2011, (Aug. 23, 2007), 3 pages.
“What’s New in Internet Explorer 8, Retrieved from: <http://msdn.
microsoft.com/enus/librarv/cc288472(v=vs.85).aspx> on Jan. 28,
2011 (2009), 15 pages.

Amato, Gianni “Protect Your Browser Mozilla Firefox from XSS
Attacks”, XSS Warning: Security extension for Mozilla Firefox,
retrieved from <http://www.gianniamato .iUproject/extension/
xsswarning/> on Nov. 5, 2007,(2007),1 page.

Anupam, et al., “Secure Web Scripting”, 1998 IEEE, (1998), pp.
46-55.

Barth, Adam “Securing Frame Communication in Browsers”, Com-
munications of the ACM, vol. 52, No. 6, (Jun. 2009), pp. 83-91.
Chan, Bernice et al., “A Client-Side Browser-Integrated Solution for
Detecting and Preventing Cross Site Scripting (XSS) Attacks”, avail-
able at <http://www.eecg.toronto.eduHie/Courses/ECE1776-2006/
Updates/XSS update.pdf>, (Sep. 25, 2006), 3 pages.

Couvreur, Juien “Curiosity is Bliss: Web API Authentication for
Mashups”, Available at http://blog.monstuff.com/archives/000296.
html (Jun. 25, 2006), 5 pages.

Crockford, Douglas “JSONRequest”, Retrieved from: <http://json.
org/JTSONRequest. html> on Nov. 3, 2007 (Apr. 17, 2006), 8 pages.
De Keukelaera, Frederik et al., “SMash: Secure Component Model
for Cross-Domain Mashups on Unmodified Browsers”, Proceeding
ofthe 17th International Conference on World Wide Web, Apr. 21-25,
2008, ACM Press, New York, NT, USA, (Apr. 21, 2008), 13 pages.
Festa, Paul “Communicator subject to frame-spoofing”, Retrieved
from: <http://news.cnet.com/2100-1023-21975 html
&tag=mncol%3btxt> on Oct. 11, 2010, (Jan. 5, 1999), 1 page.
Grosskurth, Alan et al., “Architecture and Evolution of the Modern
Web Browser”, David R. Cheriton School of Computer Science,
University of Waterloo, Available at <http://grosskurth.ca/papers/
browser-archevol-20060619.pdf>, (Jun. 2006), pp. 1-24.

Herzberg, Amir et al., “Protecting (even) Naive Web Users, or: Pre-
venting Spoofing and Establishing Credentials of Web Sites”, Bar
Ilan University, Available at <www.cs.bu.ac.il/~herzea/papers/ecom-
merce/trusted credentials area.pdf>, (Jul. 18, 2004), 26 pages.
Horak, Ales et al., “DEBVisDic—First Version of New Client-Server
Wordnet Browsing and Editing Tool”, In Proceedings of GWC 2006,
Available at <https://www.cs.cas.czlsemweb/download.
php?file=06-11-palaetal&type=pdf>, (Jan. 2006), S pages.

Hunt, Galen et al., “Detours: Binary Interception of Win32 Func-
tions”, Proceedings of the 3rd US EN IX Windows NT Symposium
(Jul. 1999), pp. 1-9.

Jackson, Collin et al., “Subspace: Secure CrossDomain Communi-
cation for Web Mashups”, In Proceedings of the International World
Wide Web Conference Committee (IW3C2), May 8-12, 2007, avail-
able at <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
123.1586&rep=repl&type=pdf>,(May 8, 2007), 10 pages.

Jim, Trevor et al., “Defeating Script Injection Attacks with Browser-
Enforced Embedded Policies”, In Proceedings of WWW 2007, May
8-12, 2007, available at <http://www2007.org/papers/paper595.
pdf>,(May 8, 2007), pp. 601-610.

Kaminsky, Dan “Black Ops 2007: Design Reviewing The Web”,
IOActive Comprehensive Computer Security Services, Available at
<http://'www.doxpara.com/DMK B02K7 Web.ppt>,(2007), 67
pages.

Karlof, Chris et al., “Dynamic Pharming Attacks and Locked Same-
origin Policies for Web Browsers”, In Proceedings of CCS 2007,
(Nov. 2007), pp. 58-71.

Kirda, Engin et al., “Noxes: A Client-Side Solution for Mitigating
Cross-Site Scripting Attacks”, Proceedings of SAC 06, Apr. 23-27,
2006, available at <http://www.seclab.tuwien.ac.aUpapers/noxes.
pdf>,(Apr. 23, 2006), 8 pages.

Levin, Lori et al., “The JANUS-III Translation System: Speech-to-
Speech Translation in Multiple Domains”, Machine Translation, vol.
15,(2000), pp. 3-25.

Ley, Jim “Using the XML HTTP Request object”, Retrieved from:
<http://www jibbering.com/2002/4/httprequest.2005.8.html> on
Nov. 4, 2011, (Apr. 2002), 6 pages.

Matthies, Christian “DNS Pinning Explained”, Retrieved from:
<http://christlan.blogspot.com/2007/07/dns-pinning-explained.
html> on Nov. 3, 2007, (Jul. 1, 2007), 12 pages.

Melez, Myk et al., “Mozilla Application Framework in Detail”,
Retrieved from: <https://developer.mozilla.org/en/mozilla applica-
tion framework in detail> on Jan. 28, 2011,(Feb. 15, 2006), 6 pages.
Miyamoto, Daisuke et al., “SPS: A Simple Filtering Algorithm to
Thwart Phishing Attacks”, AINTEC 2005, (2005), 15 pages.
Nielson, Jordan et al., “Benchmarking Modern Web Browsers”,
Department of Computer Science, University of Calgary, Available at
<http://www.aqualab.cs.northwestern.edu/HotWeb08/papers/
Nielson-BMW .pdf>,(Oct. 2008), pp. 1-6.

Nixey, Peter “Why XHR Should Become Opt-In Cross-Domain”,
Retrieved from; <http://www.webkitchen.co.uk/2006/07/why-xhr-
should-become-opt-in-cross.html> on Dec. 21, 2007, (Jul. 25, 2006),
17 pages.

Novak, Mark “Extending SDL: Documenting and Evaluating the
Security Guarantees of Your Apps”, MSDN Magazine, available at
<http://msdn.microsoft.com/en-us/magazine/cc163522.
aspx>,(Nov. 2006), 6 pages.

Radosevic, Danijel et al., “Development of a Higher-Level Multime-
dia Scripting Language”, 23rd Int. Conf. Information Technology
Interfaces ITI 2001, (Jun. 19, 2001), pp. 201-208.

Samarati, Pierangela et al., “An Authorization Model for a Distrib-
uted Hypertext System”, IEEE Transactions on Knowledge and Data
Engineering, vol. 8, No. 4, (Aug. 1996), pp. 555-562.

Spanias, Andreas et al., “Development Of New Functions and Script-
ing Capabilities in Javaa-DSP For Easy Creation and Seamless Inte-
gration Of Animated DSP Simulations In Web Courses”, 2001 IEEE,
(2001), pp. 2717-2720.

Tam, et al., “A Fast and Flexible Framework Of Scripting for Web
Application Development: A Preliminary Experience Report”, 2000
IEEE, (2000), pp. 450-455.

Van Kesteren, Anne “Cross Domain HXR Enabling Read Access for
Web Resourced”, http://www.w3.0rg/TR/2007/WD-access-control-
200710011, (Nov. 3, 2007), 1-12.

Verisign Inc., “Licensing VeriSign Certificates: Securing Multiple
Web Server and Domain Configurations”, White Paper, Available at
<www.msctrustgate.com/pdf/licensing.pdf>, (Nov. 2, 2001), 15
pages.

Zoline, Kenneth O., “An Approach for Interconnections SNA and
XNS Networks”, In Proceedings of SIGCOMM 1985,(1985), pp.
184-198.

Zhuang, Xiaoyu, “Interaction Between Web Browsers and Script
Engines”, Retrieved at <<http://uu.diva-portal.org/smash/get/
diva2:566712/FULLTEXT01>>, 1In Student Thesis, Master
Programme in Computer Science, Uppsala University, Nov. 2012,
pp. 63.

Wang, et al., “Protection and Communication Abstractions for Web
Browsers in MashupOS”, Retrieved at <<http://www.csd.uwo.ca/
faculty/hanan/610/papers/mashups.pdf>>, In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Prin-
ciples, Oct. 14, 2007, pp. 15.

PCT International Search Report and Written Opinion for Applica-
tion No. PCT/US2008/079989, Apr. 15, 2009, 10 pages.

US 9,342,274 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

PCT International Preliminary Report on Patentability for Applica-
tion No. PCT/US2014/040582, Jul. 17, 2015, 11 pages.

U.S. Appl. No. 14/507,568, Notice of Allowance mailed Sep. 14,
2015, 8 pages.

U.S. Appl. No. 14/507,568, Amendment filed Aug. 27, 2015, 20
pages.

U.S. Appl. No. 13/114,924, Amendment filed Apr. 25, 2014, 21
pages.

U.S. Appl. No. 13/114,924, Amendment filed Nov. 15, 2013, 19
pages.

Extended European Search Report, EP Application No. 08848369.8,
Oct. 14, 2013, 6 pages.

U.S. Appl. No. 10/867,338, Final Office Action dated May 13, 2008,
6 pages.

Foreign Office Action, CN Application No. 200880115316.8, Mar.
20, 2012, 13 pages.

Foreign Office Action, CN Application No. 200880115316.8, Jun. 8,
2013, 12 pages.

Foreign Office Action, CN Application No. 200880115316.8, Jun.
27,2012, 12 pages.

Foreign Office Action, CN Application No. 200880115316.8, Sep.
27,2012, 6 pages.

Foreign Office Action, CN Application No. 200880115316.8, Oct.
25,2011, 11 pages.

Foreign Office Action, JP Application No. 2010-533140, Apr. 26,
2013, 11 pages.

Foreign Office Action, JP Application No. 2010-533140, Sep. 24,
2013, 4 pages.

U.S. Appl. No. 10/867,338, Office Action mailed Nov. 15, 2007, 5
pages.

U.S. Appl. No. 11/935,323, Office Action mailed Dec. 18, 2013, 16
pages.

U.S. Appl. No. 13/570,044, Office Action mailed Apr. 19, 2013, 5
pages.

U.S. Appl. No. 13/570,044, Notice of Allowance mailed Jul. 22,
2013, 6 pages.

Ernesto Damiani, “A Fine-Grained Control System for XML Docu-
ments”, ACM, May 2002, pp. 169-202.

Kevin Fu, “Dos and Don’ts of Client Authentication on the Web”,
IEEE, 2002, 2002, 17 pages.

Joshi, “Security Models for Web-Based Applications”, Communica-
tions of the ACM, Feb. 2001, 10 pages.

Komathy, “Security for XML messaging services—a component-
based approach”, Journal of Network and Computer Applications,
2003, 15 pages.

U.S. Appl. No. 13/911,514, Notice of Allowance dated Sep. 14,2015,
20 pages.

U.S. Appl. No. 13/911,514, Amendment filed Aug. 19, 2015, 11
pages.

U.S.Appl. No. 13/911,514, Notice of Allowance dated May 20, 2015,
21 pages.

PCT Demand, Application No. PCT/US2014/040582, Feb. 16,2015,
14 pages.

U.S. Appl. No. 13/114,924, Notice of Allowance mailed Dec. 30,
2015, 21 pages.

* cited by examiner

US 9,342,274 B2

Sheet 1 of 12

May 17, 2016

U.S. Patent

Z11 siaulod
POUISI Jo 3jqe]

-0

oLl

PLIOM 2AREN

aoeLIaU|
NOD

| K

muo:bwToo WOD
1o} ssllepunog ssoloe [eysiey Apusiolyg

_

_

_

_

_

_ ppoylsw
_ cpoysw
_

_

_

_

_

_

_

PO 1d1dS

001 309[qO

Zpoyisw
LPoylaw A&
Zol adfjojoud

US 9,342,274 B2

Sheet 2 of 12

May 17, 2016

U.S. Patent

aoella)U] Jo sweN

————

c0Z dld 1A

—_— e ——

002 LNI 1A

PHOM 2AlEN

¢'OM

/

\

Jueuep NOD
Juw, Buns

PO 3d1IoS

US 9,342,274 B2

Sheet 3 of 12

May 17, 2016

U.S. Patent

—O

ore

aoelIa)u|
NOD

PIOM SAIBEN

0E€ se|qel-A

¢ "OIA

0z¢ Reuy J0IS

0L¢ @dAjojoidg

Ve

Z A X

00¢ uopejussaday
adA]

pliom 1diog

U.S. Patent May 17, 2016 Sheet 4 of 12 US 9,342,274 B2

400

Receive, by a browser application of a computing
device, script code including receiving code
representing a component object model (COM) object.

i 410

Generate a prototype of the COM object, e.g., generate a
type representation including a dynamic type
associated with the COM object.

i 420

Dynamically generate an intermediate data structure
tailored for dynamic COM object translation between
the script code and the native code or retrieve the
intermediate data structure from a cache memory in
response to identifying a request for the intermediate
data structure.

l 430

Marshal the code representing the COM object to the
native code, in response to a request for native code
representing the COM object, based on the intermediate
data construct.

FIG. 4

US 9,342,274 B2

Sheet 5 of 12

May 17, 2016

U.S. Patent

SO

r——— - - 1
| GLS _ oLS ozc
" >mm___.n_u“w>_<m_o_>_ " AJONW3N 10S$3204d
| _ _ I J
[}
L}
[]
\j
/08§ /
/- spelao /
/ WOD 104 / 1144 0€S

saunjonng /
ejeq /
ajeIpawLIB| /

jusuodwon Buijjeys.iep

uonedlddy Jasmoug

\\ \ \\\ \ \ \\
/ /| /
144 / \ \ A 44 \\ \\) rANY \ \\ ves
108lqo \||||||\ 34092 \ [@A3EN 01 3duos / 3009 \n|||||\ 109lqo
wos / /o ANLYN S sesmeE]S 08/ / INOD

U.S. Patent May 17, 2016 Sheet 6 of 12 US 9,342,274 B2

Object 610

Add or Release Reference
Increases or Decreases
Reference Count

Object 600

FIG. 6

U.S. Patent

May 17, 2016 Sheet 7 of 12 US 9,342,274 B2

Object 710

Circular Reference

Object 700

FIG. 7

US 9,342,274 B2

Sheet 8 of 12

May 17, 2016

U.S. Patent

0Z8 2lld

0£8 392[q0
jno Buiso|)
210joq
9|4 @s0|D

8 "OId

PHOM aABEN

008 32lq0

-

Pl1op 3dLIDS

018 39lqo

7
”~
-

!
/
/
/

/
7 paddoag
ooualajey

US 9,342,274 B2

Sheet 9 of 12

6 "OId

016 Aowap
o6
(Aouapuoadaq) *
oouUaIdjoy /
osea|oy \
- /
L7 Kowap

P wieoay

L —

026 <

May 17, 2016

U.S. Patent

0€6
193[90 WO (Kouspuadaq) 006 399[q0
CIYEYETEN
PHOM oAEN puom 1d1oS

U.S. Patent May 17, 2016 Sheet 10 of 12 US 9,342,274 B2

1000

Initiate a request to reclaim memory associated with a
script code object with a dependency to a component
object model (COM) object represented in native code.

i 1010

Request the script code object and the COM object to
prepare for the request to reclaim the memory
associated with the script code object.

l 1020

Check references of the COM object, e.g., determine an
additional dependency of the COM object that prevents
the confirmation from the COM object.

l 1030

in response to receiving confirmation from the script
code object that the script code object is prepared for
the request and in response to receiving confirmation
from the COM object that the COM object is prepared
for the request, unwinding the dependency and
proceeding to reclaim the memory associated with the
script code object.

FIG. 10

U.S. Patent May 17, 2016 Sheet 11 of 12 US 9,342,274 B2

Object
1124

Computing | -
Device ~
1120

N I 1140 .,
\\ | / //
Object Y ' —] Computing
1126 | ______ Communications Device
Network/Bus 1128
N
// \\\
// A
/ AY

d AN 1112
// 5
//

[=
Server Object

e NS
Server Object

Data
Store(s)
1130

FIG. 11

US 9,342,274 B2

Sheet 12 of 12

May 17, 2016

U.S. Patent

—— -

0L¢1

J1ION3Y

¥31NdINOD

y

09cl1
oep9U|
YIOMISN

4RIk |

L¢cl shg WRISAS

[/
Yol
N
—

Keidsig
b5 IndjnQ

A

44"
yun

puIssasoig

AJOWd] WoISAS

f——_—_—_——_- —_—_ e, —————

US 9,342,274 B2

1
DYNAMIC CODE GENERATION AND
MEMORY MANAGEMENT FOR
COMPONENT OBJECT MODEL DATA
CONSTRUCTS

TECHNICAL FIELD

The subject disclosure relates to dynamic code generation
and memory management for component object model
(COM) data constructs with corresponding representations in
script code and native code.

BACKGROUND

As the web browsing experience begins to evolve from a
flat presentation of information with minimal interactivity to
a richer application or applet experience with lots of interac-
tivity at the client side, or more generally, a hybrid of infor-
mation display and richer interactivity with objects on dis-
play, there are a variety of challenges based on evolving the
old document object model (DOM) originally designed pri-
marily for flat presentation of information based on native
code on a client to an experience that fluidly handles script
code, such as javascript objects. For instance, speeding the
user experience up is a main challenge.

For instance, with fly out menus of the past, the web expe-
rience flickered with delays based on communications with
the server. Script enables small programs to modify the DOM
on the fly without going back to the server, e.g., Asynchro-
nous JavaScript and extensible markup language (AJAX). As
people want to do more and more on the fly without returning
to the server, making script code execute fast has become a
challenge.

Since the user experience centers on scripting the DOM, it
is desirable to be able to change the DOM very fast since that
maximizes the interactive response. Communication
between the scripting engines and the native classes of the
DOM were poor in the past due to the use of OLE automation
including a set of interfaces, iDispatch, iActiveScript, etc.,
which make any object scriptable. In addition, a variety of
Component Object Model (COM) objects may be indiscrimi-
nately created today, but which may be unnecessary, or oth-
erwise introduce overhead maintaining the objects, slowing
down performance.

In short, to date, there have been no web browsing systems
designed specifically around efficient code generation for
marshaling between script and native worlds for COM data
structures, or around memory management designed for
COM and COM data structures. In this regard, COM is a
binary-interface standard for software components used to
enable interprocess communication and dynamic object cre-
ation in a large range of programming languages.

Basically, COM is a language-neutral way of implement-
ing objects that can be used in environments different from
the one in which they were created, even across machine
boundaries. For well-authored components, COM allows
reuse of objects with no knowledge of their internal imple-
mentation, as it forces component implementers to provide
well-defined interfaces that are separate from the implemen-
tation. The different allocation semantics of languages are
accommodated by making objects responsible for their own
creation and destruction through reference-counting. Casting
between different interfaces of an object is achieved through
the Querylnterface() function. The preferred method of
inheritance within COM is the creation of sub-objects to
which method calls are delegated.

10

15

20

25

30

35

40

45

50

55

60

65

2

However, as mentioned, conventional web browsing has
evolved in a way that can lead to inefficient use of COM
constructs, noticeably affecting performance of a web brows-
ing experience, and modern fast broadband data connections
make such delays more noticeable, allowing for greater mar-
gins of improvement in the user experience.

The above-described deficiencies of today’s code genera-
tion and memory management schemes are merely intended
to provide an overview of some of the problems of conven-
tional systems, and are not intended to be exhaustive. Other
problems with the state of the art and corresponding benefits
of some of the various non-limiting embodiments may
become further apparent upon review of the following
detailed description.

SUMMARY

A simplified summary is provided herein to help enable a
basic or general understanding of various aspects of exem-
plary, non-limiting embodiments that follow in the more
detailed description and the accompanying drawings. This
summary is not intended, however, as an extensive or exhaus-
tive overview. Instead, the sole purpose of this summary is to
present some concepts related to some exemplary non-limit-
ing embodiments in a simplified form as a prelude to the more
detailed description of the various embodiments that follow.

In accordance with one or more embodiments and corre-
sponding disclosure, various non-limiting aspects are
described in connection with dynamic code generation and
memory management techniques for COM objects with cor-
responding representations in script code and native code.

For instance, an embodiment includes receiving, by a
browser application of a computing device, script code
including code representing a component object model
(COM) object and generating a prototype of the COM object
including a type representation with dynamic type(s) associ-
ated with the COM object. Then, in response to a request for
native code representing the COM object, the code represent-
ing the COM object is marshaled to the native code based on
intermediate data construct(s) tailored for dynamic COM
object translation between the script code and the native code.
The intermediate data construct(s) tailored for dynamic COM
object translation can be dynamically generated if not pre-
stored in cache memory. In one example embodiment, a vir-
tual table is generated based on a type of the dynamic type(s)
and the virtual table generated for the type is cached for
re-use.

In one non-limiting implementation, a browser component
receives script code including the code representing the COM
object and a marshaling component can marshal, based on a
request for native code representing the COM object, the code
representing the COM object to the native code based on a
pre-constructed intermediate data structure. The pre-con-
structed intermediate data structure is pre-constructed based
on a dynamic type representation associated with a prototype
of' the COM object and cached for re-use by the marshaling
component.

For an example of efficient memory management for COM
objects, a method includes initiating a request to reclaim
memory associated with a script code object with a depen-
dency to a component object model (COM) object repre-
sented in native code and requesting the script code object and
the COM object to prepare for the request to reclaim the
memory associated with the script code object. Following a
two-phase commit process, in response to receiving confir-
mation from the script code object that the script code object
is prepared for the request and in response to receiving con-

US 9,342,274 B2

3
firmation from the COM object that the COM object is pre-
pared for the request, the dependency is unwound, or other-
wise undone or finalized, and allowing the system to reclaim
the memory associated with the script code object. As an
example, the unwinding of the dependency can include
releasing a reference to the COM object. Furthermore, before
confirming the memory can be reclaimed, the references of
the COM object can be checked to determine if an additional

dependency of the COM object prevents the confirmation
from the COM object.

Other embodiments and various non-limiting examples,
scenarios and implementations are described in more detail
below.

BRIEF DESCRIPTION OF THE DRAWINGS

Various non-limiting embodiments are further described
with reference to the accompanying drawings in which:

FIG. 1 illustrates an exemplary system that facilitates mar-
shaling of COM constructs across script and native code
boundaries according to an embodiment;

FIG. 2 is a diagram illustrating a process in which expen-
sive data structures are formed in the native code environment
based on variables and information passed in a string across
the boundary from script to native code according to an
embodiment;

FIG. 3 is a diagram illustrating a process that forms data
structures based on script objects including representations of
COM objects for efficient use and/or re-use during a marshal-
ing process according to an embodiment;

FIG. 4 is a flow diagram illustrating an exemplary non-
limiting embodiment for dynamically marshaling based on
intermediate data structures tailored to COM representations
according to an embodiment;

FIG. 5 is a block diagram illustrating an exemplary com-
puting device comprising dynamic marshaling capabilities
based on intermediate data structures tailored to COM repre-
sentations according to an embodiment;

FIG. 6 is a diagram illustrating exemplary reference count-
ing for COM objects according to an embodiment;

FIG. 7 is a diagram illustrating exemplary reference count-
ing for a variety of COM objects resulting in a circular refer-
ence situation addressed by an embodiment described herein;

FIG. 8 is a block diagram illustrating an exemplary
memory management function with finalizer support for
objects referenced in native code from script code according
to an embodiment;

FIG. 9 is a block diagram illustrating an exemplary
memory management function with finalizer support for
COM objects referenced in native code from script code
according to an embodiment;

FIG. 10 is a flow diagram illustrating an exemplary non-
limiting embodiment for applying a two phase commit pro-
cess in connection with the finalizer support provided for
COM objects according to an embodiment;

FIG. 11 is a block diagram representing exemplary non-
limiting networked environments in which various embodi-
ments described herein can be implemented; and

FIG. 12 is a block diagram representing an exemplary
non-limiting computing system or operating environment in
which one or more aspects of various embodiments described
herein can be implemented.

10

15

20

25

30

40

45

50

55

60

65

4
DETAILED DESCRIPTION

Overview

As indicated in the background, there have been no web
browsing systems designed specifically around efficient code
generation for component object model (COM) constructs
implicated by marshaling between script and native worlds,
or around memory management designed for COM, which
continues to be embraced by operating systems, web brows-
ers, etc. For instance, the creation of applications using java-
script can be predicated on script acting on COM data con-
structs.

Dynamic code generation and memory management tech-
niques are provided for COM objects with corresponding
representations in script code and native code. A browser
component can receive script code including the code repre-
senting the COM object and a marshaling component is pro-
vided that marshals, based on a request for native code rep-
resenting the COM object, the code representing the COM
object to the native code based on a pre-constructed interme-
diate data structure. The pre-constructed intermediate data
structure, such as a virtual table, is pre-constructed based on
a dynamic type representation associated with a prototype of
the COM object and cached for re-use by the marshaling
component.

Accordingly, in various embodiments, dynamic code gen-
eration is provided in consideration of COM and COM con-
structs. In this regard, dynamic code generation techniques
described herein enable fast dynamic marshaling across
boundaries between script and native code by waiting to
create some COM objects or associated data structures that
have been automatically created in the past until some indi-
cation is present that the COM objects or data structures will
be needed, used or useful, providing up to 150 times speed
improvement over the usage of iDispatch COM interfaces in
the past. For example, rather than automatically create a
virtual table (a.k.a., a “v table”) for each COM interface,
which is a data structure defining a set or array of virtual
functions that are called for a given COM interface, various v
tables can be lazily generated by waiting to generate parts of
the v table until needed.

In various embodiments, memory management is also
redesigned around COM and COM constructs, so that gar-
bage recycling is efficiently performed for COM. Embodi-
ments include the provision memory management including
finalizer support of COM objects having script and native
world representations including an implementation of a two-
phase commit protocol that enables efficient and conservative
recycling of objects and associated memory.

Inone embodiment, finalizer support is added, for instance,
to memory management. Code is generated for script which
works really well with COM by going down to the register
allocation. Finalizers are applicable where an object is not
reachable, is going to die, but the system may want to do some
last things to the object before it dies. For instance, where
script and native objects exist in relation, e.g., the script object
opened a file, a finalizer can be used to close the file before
ending the script object. In this regard, data structures are thus
provided for recycling of COM to do fast release of refer-
ences. In one embodiment, two phase commit techniques are
employed.

In one embodiment, a method comprises receiving, by a
browser application of a computing device, script code
including receiving code representing a COM object, gener-
ating a prototype of the COM object including generating a
type representation including at least one dynamic type asso-
ciated with the COM object, and, in response to a request for

US 9,342,274 B2

5

native code representing the COM object, marshaling the
code representing the COM object to the native code based on
at least one intermediate data construct tailored for dynamic
COM object translation between the script code and the
native code.

In another embodiment, a computing device, comprising a
memory having stored computer executable components and
a processor communicatively coupled to the memory that
facilitates execution of a browser component and a marshal-
ing component. The browser component is configured to
receive script code including code representing a COM
object. The marshaling component marshals, based on a
request for native code representing the COM object, the code
representing the COM object to the native code based on a
pre-constructed intermediate data structure of a set interme-
diate data structures. The pre-constructed intermediate data
structure is pre-constructed based on a dynamic type repre-
sentation associated with a prototype of the COM object and
cached for re-use by the marshaling component.

In another embodiment, a computer-readable storage
medium is provided comprising computer-readable instruc-
tions that, in response to execution by a computing system,
cause the computing device including at least one processor
to perform operations. The operations include initiating a
request to reclaim memory associated with a script code
object with a dependency to a component object model
(COM) object represented in native code and requesting the
script code object and the COM object to prepare for the
request to reclaim the memory associated with the script code
object. Then, based on confirmation from the script code
object that the script code object is prepared for the request
and confirmation from the COM object that the COM object
is prepared for the request, the dependency can be unwound
and the memory associated with the script code object can be
reclaimed.

Some performance results have shown that these tech-
niques contribute to a 40-150 times speed improvement over
previous web page loads and interactions without application
of the various embodiments described herein and in more
detail below.

Dynamic Code Generation and Memory Management for
Component Object Model Objects

FIG. 1 illustrates an exemplary system that facilitates mar-
shaling of COM constructs across script and native code
boundaries according to an embodiment. An object 100 from
the script universe, e.g., script consumed by a browser appli-
cation, can instantiate a prototype object 102, which holds
methods of the object 100, such as methodl, method2,
method3, method4, etc. Today, as described above, there is no
to efficiently marshal across script and native code bound-
aries for COM objects by exploiting properties of COM
objects in the context marshaling such COM constructs from
script to native code, or vice versa. In this regard, if object 100
is a COM object, or if a COM construct is otherwise associ-
ated with object 100, reproduction of the COM construct on
the native side involves generating of a COM interface 110
associated with a table of method pointers 112, that holds
pointers to the native code implementations functionality for
various methods of the prototype 102. The number of meth-
ods methodl, method2, method3, methodd, etc. may be of a
different order than the set of pointers ptrl, ptr2, ptr3, etc. A
slot array can also include slots holding values pertaining to
the methods for the COM object. In this regard, today, there is
no efficient way to marshal a COM object implementation in
script world efficiently to the native code representation, i.e.,

10

15

20

25

30

35

40

45

50

55

60

65

6

such marshaling has yet to be considered in a way that is
tailored to COM object characteristics, structural aspects or
properties.

FIG. 2 is a diagram illustrating a process in which compu-
tationally expensive data structures are formed in the native
code environment from the script environment based on vari-
ables and information passed in a string across the boundary
from script to native code according to an embodiment. In this
regard, by packing a string and following a complex commu-
nication protocol involving multiple communications across
the boundary between script and native execution environ-
ments, FIG. 2 in essence illustrates an inefficient way of
achieving the marshaling of COM objects from the script
world to the native world. In this regard, a complex string of
information ml, which varies for different constructs and
varies for different COM objects, is packed up to represent
information to the native word about representing the under-
lying objects. For each of the arguments, a COM variant is
generated for consumption as string ml, which is a large data
structure with all types could possibly want a given method,
such as methodl1 of FIG. 1. Data structures are then generated
in native code including a flag indicating a type, such as v
table of Integer type 200, with bits of the Integers, or a v table
pointer 202, or bits of the pointer, and a name of the interface
for the v table pointer (e.g., a dispatch ID number). In this
regard, creating the logic, the strings, and the data structures
is computationally expensive, as also is creating the logic
from strings to numbers to methods in native code represent-
ing COM objects and corresponding methods.

As mentioned, to perform this string based marshaling, a
complex protocol is also currently followed involving a vari-
ety of back and forth communications, such as to request a
particular dispatch ID, replies, such as asking how many
arguments are desired, answers, such as a number of desired
arguments, further replies, such as “only a subset of the
desired arguments are available”, further questions, such as
“should a default solution be applied when fewer arguments
are available than desired?”, further answers, and so on. The
current protocol is unwieldy when it comes to the needs of
COM objects and thus, techniques are provided herein that
streamline the generation of COM objects in the native world
advantageous, as described in more detail below.

FIG. 3 is a diagram illustrating a process that forms data
structures based on script objects including representations of
COM objects for efficient use and/or re-use during a marshal-
ing process according to an embodiment. In this embodiment,
a custom set of intermediate data structures, such as a
sequence of codes, is generated for COM objects on the script
side, and these script side representations include values of
the COM code and enable calling the COM interface 340
directly.

For instance, in the non-limiting context of generating v
tables, in one embodiment, a v table is generated as an inter-
mediate data structure once for each dynamic type repre-
sented by type representation 300. For instance, type repre-
sentation 300 represents types of sub-objects X, Y and Z of
prototype 310 of a COM object. At run time, the type repre-
sentation 300 can be created. In this example, the type repre-
sentation 300 has an X, Y, Z, but another one might have X, A,
Z and W, and thus, based on a run time analysis of dynamic
type representations, such as dynamic type representation
300, over time, other COM objects that will run can leverage
the preparatory work and data structures performed in con-
nection with the running of other instances of COM objects.
Accordingly, with the presently described embodiments,
there is an opportunity to perform some work in the back-
ground, prior to any need for a COM object representation in

US 9,342,274 B2

7

the native environment, to build intermediate data structures
that take advantage of COM attributes, characteristics or
properties, so that the marshaling of COM objects from script
to native code is made efficient.

As mentioned, one way to facilitate the marshaling process
is to build intermediate data structures tailored to the genera-
tion of v tables associated with the methods and types of
prototype 310. Prototype 310 can have a slot array 320
because dynamic objects have different dynamic properties,
different and separated from the object header, which are
represented in the slot array, which is a data structure repre-
senting where all the values are stored, type, how many slots,
how many types, etc. In this regard, the dynamic type of the
dynamic type representation 300 can be used to drive genera-
tion of the COM interaction and object marshaling. The inter-
mediate data structures, such as v-tables 330 that point to
code portions for each method and generated based on the
dynamic type representation 300, can be cached and then be
re-used for further marshaling, since their parts may be
shared, and composed as needed, by and among many COM
objects to be made sooner or later.

Various embodiments thus take advantage of dynamic type
representations, and by applying advance knowledge of how
COM data structures are represented, marshaling the COM
data structures across script/native boundaries is performed
faster by re-using the cached v-tables 330 rather than dynamic
synthesizing them when needed. V-tables are thus institution-
alized into the dynamic type representation in one aspect. For
common cases of COM objects, since the intermediate data
structures will have already been created, the system does not
allocate a new v-table, but rather can quickly compose or
group the intermediate data structures from fast in-memory
storage to suit the given COM object.

Accordingly, by introducing specialized knowledge of
COM into the marshaling process, such as by re-using v-table
intermediate data structures, and being able to synthesize a
v-table fast, thus improves the browsing experience or other
experience traversing script and native code boundaries for
COM objects. Once many instances of the intermediate data
structures are formed and cached, marshaling has in effect
already been done. Even where a new dynamic type is intro-
duced by a given COM object without a v table, the system is
also fast at creating the new v table intermediate data structure
dueto specialized COM knowledge of the type system. In this
regard, knowledge of what COM interfaces the script engine
knows about informs the process. As methods are being
added to an object, the methods can be incrementally matched
to the COM interfaces about which the script engine already
knows, and knowledge is maintained of what objects can
implement what COM interfaces. With this knowledge, with
a mere check of a given type of COM structure, a determina-
tion of whether the cached structures can be re-used or
whether any should be synthesized from scratch is possible.

The creation and maintenance of the intermediate data
structures to support the marshaling of COM objects can be
background activity and thus can create performance benefits
with low costs, e.g., the creation and caching of v tables for
reuse, any incremental bookkeeping can be performed in the
background, identifying what objects correspond to inter-
faces, and enable fast synthesis as a result.

FIG. 4 is a flow diagram illustrating an exemplary non-
limiting embodiment for dynamically marshaling based on
intermediate data structures tailored to COM representations
according to an embodiment. At 400, script code including a
representation of a COM object is received by a browser
application of a computing device. At 410, a prototype of the
COM object is generated, e.g., a type representation includ-

20

25

30

40

45

60

8

ing a dynamic type associated with the COM object is gen-
erated. At 420, in response to identifying a request for an
intermediate data structure tailored for dynamic COM object
translation between the script code and the native code, the
intermediate data structure can be generated or the interme-
diate data structure can be retrieved from a cache memory. At
430, the code representing the COM object is marshaled to
the native code, in response to a request for native code
representing the COM object, based on the intermediate data
construct.

The intermediate data structure can be dynamically gener-
ated for handling the marshaling in response to the request for
the native code. The intermediate data structure can be
accessed from a pre-stored set of intermediate data structures
previously generated based on the script code.

An example of an intermediate data structure is a virtual
table based on a type of a dynamic type, which can be cached
for re-use. A determination can be made that a virtual table for
agiven type of the dynamic type is not pre-stored and if so, the
virtual table can be dynamically generated for handling the
marshaling. A determination can be made that a virtual table
for a given type of the dynamic type is pre-stored and if so, the
virtual table can be accessed for handling the marshaling.

FIG. 5 is a block diagram illustrating an exemplary com-
puting device comprising dynamic marshaling capabilities
based on intermediate data structures tailored to COM repre-
sentations according to an embodiment. A non-limiting com-
puting device 500 can include memory 510 for storing com-
puter-executable components and instructions. A processor
520 can facilitate operation of the computer-executable com-
ponents and instructions by the computing device 500. In this
regard, in one embodiment, computing device 500 includes
browser application 530 that receives script code 532 which
can include COM object 534, which will be marshaled to
native code 542 and corresponding COM object 544 in native
representation. A marshaling component 540 cooperates with
browser application 530, or is included with browser appli-
cation 530, which generates intermediate data structures for
COM objects 550, which can be stored in a cache memory
515, which can be included in, or separate from memory 510.

The computing device 500 can include memory 510 having
computer executable components stored thereon and a pro-
cessor 520 communicatively coupled to the memory 510, the
processor 520 configured to facilitate execution of a browser
component 530 configured to receive script code 532 includ-
ing code 534 representing a component object model (COM)
object and a marshaling component 540 configured to mar-
shal, based on a request for native code 542 including COM
object 544 representing the COM object. Applying the tech-
niques described herein, the COM object 544 representing the
COM object to the native code 542 is based on a pre-con-
structed intermediate data structure of a set intermediate data
structures, which is pre-constructed based on a dynamic type
representation associated with a prototype of the COM object
and cached for re-use by the marshaling component.

The marshaling component 530 is further configured to
dynamically generate another intermediate data structure
based on a request for the other intermediate data structure
when the other intermediate data structure is not cached for
re-use. The marshaling component 530 is further configured
to cache the other intermediate data structure for further re-
use.

The marshaling component 530 is further configured to
generate a virtual table based on a type of the at least one
dynamic type and cache the virtual table for re-use. The
marshaling component 530 is further configured to determine
that a virtual table for a given type of the dynamic type is not

US 9,342,274 B2

9

pre-stored and dynamically generate the virtual table if not
pre-stored. The marshaling component 530 is further config-
ured to determine that a virtual table for a given type of the
dynamic type is pre-stored and access the virtual table, if so.

In addition to the creation and maintenance of data struc-
tures that enable efficient marshaling of COM objects across
script/native code boundaries, various embodiments
described in more detail below provide efficient memory
management in consideration of COM data structures includ-
ing efficient garbage collection and cleanup of COM data
structures, including finalizer support suited to COM data
structures.

In this regard, in one embodiment a garbage collection
process is given knowledge of the memory management
requirements of COM objects. In particular, COM has a prob-
lem with circular references, since reference counting is used.
FIG. 6 is a diagram illustrating exemplary reference counting
for COM objects according to an embodiment. In COM,
whenever an object 610 receives a pointer from an object 600,
object 610 increments a counter by 1 to reflect the addition of
the reference. In turn, when the object 600 ceases to hold its
pointer to object 610, the counter is decremented by 1. When
the counter reaches zero, object 610 can be deleted.

The work to implement this is incremental, but the book-
keeping is hard due to the cost of an error. If done wrong,
references stay held when not needed or vice versa. This can
happen, for example, when the bookkeeping work starts in
one domain, but then other domains become involved in
holding or releasing references to object 610, and due to
hidden rules about when or how the counter can be changed,
etc., rules can become quagmire or lost in the solution. And
such an error can ultimately result in a circular referencing
situation, which in its simplest form, is represented in FIG. 7,
where object 700 holds a reference to object 710, but deletion
of either object cannot proceed, because of the reciprocal
dependency of object 710 holding a reference to object 700,
even where either object serves no present purpose in the
system, and could be deleted.

Accordingly, embodiments herein substantially reduce the
probability or number of circular references that occur by
providing finalizer support suited for COM object finaliza-
tion. FIG. 8 illustrates example finalizer support for objects
referenced in native code from script code according to an
embodiment. For example, if an instance of an object 800 is
pointed to or referenced by an object 810, it may be desirable
to close delete or reclaim memory associated with the object
800 when that references is dropped by object 810. However,
the memory management system of the script engine may
take the opportunity to determine if there are any last func-
tions to perform with respect to object 800, e.g., to unwind
any dependencies of object 800. An example of a dependency
of object 800 would be if object 800 has opened a file 820 in
native code during execution, and thus, for efficient operating
system performance of the native environment, the file 820 is
closed prior to reclaiming memory associated with object
800. The object 800 is thus finalized after the reference from
object 810 is dropped to maintain efficient state of affected
objects and dependencies. Finalization also gives objects,
such as object 800, a chance to assess whether any depen-
dency prevents reclamation of their memory, as their use to
the system may remain for other reasons to be discovered
through an analysis of dependencies.

FIG. 9 is a block diagram illustrating an exemplary
memory management function with finalizer support for
COM objects referenced in native code from script code
according to an embodiment. As mentioned, a finalizer is
used for an object that is of no further use to a system, and is

20

25

30

40

45

10

not reachable by any object, but there may be some final
operations to perform with respect to the object, e.g., to
unwind a dependency.

In the native code versus script code context, script object
900 may be occupying some memory 910, and script object
900 may invariably acquire references 930 to other objects
such as a COM object 920 represented in native code, or
release references 940 of the references 930 depending on the
operation. Embodiments herein thus provide recycling for
COM including data structures and methods for fast release.
In this regard, for example, script object 900 might hold some
native resource, like a file or a reference to COM object 920.
The script object 900 represents the object to the script world,
and over time, the system may no longer need the object and
wish to consume the memory for other usages, but before
script object 900 can be removed, the COM object 920 is
checked to determine that the dependency can be removed.

If script object 900 points at COM object 920, it will have
added a reference 930. Then, if the system wants to reclaim
the memory associated with script object 900, before the
system decrements the counter associated with the depen-
dency to COM object 920, a release is to be performed, and
thus a finalizer runs code to handle the release. In one aspect,
the speed of releasing a COM object as part of finalizing is
increased in the embodiments described herein by imple-
menting interoperation of functionality with COM referenc-
ing and through a two-phase commit protocol that ensures no
objects are prematurely finalized.

By way of a little background concerning two-phase com-
mit, the protocol is commonly used in transaction processing,
databases, and computer networking and is a type of atomic
commitment protocol. Two-phase commit is a distributed
algorithm that coordinates processes that participate in a dis-
tributed atomic transaction on whether to commit or abort
(roll back) the transaction (a type of consensus protocol). To
accommodate recovery from failure, the protocol’s partici-
pants use logging of the protocol’s states. Log records, which
are typically slow to generate but survive failures, are used by
the protocol’s recovery procedures. Protocol variants exist
that primarily differ in logging strategies and recovery
mechanisms. In a “normal execution” of any single distrib-
uted transaction, i.e., when no failure occurs, which is typi-
cally the most frequent situation, the protocol comprises two
phases:

The commit-request phase, or voting phase, in which a
coordinator process attempts to prepare all the transaction’s
participating processes to take the steps for either committing
or aborting the transaction and to vote, either “Yes”: commit
if the transaction participant’s local portion execution has no
issues, or “No”: abort if a problem has been detected with the
local portion, and

The commit phase, in which, based on the voting, the
coordinator decides whether to commit (if unanimously have
voted “Yes”) or abort the transaction (otherwise), and notifies
the result to the transaction participants. The participants can
then follow with actions (commit or abort) with their local
transactional resources.

While developed in transaction processing, the two-phase
commit protocol used in this context allows fast and accurate
release of COM data constructs for efficient memory man-
agement. In this regard, the two-phase commit protocol is
generalizable to any exchange involving uncertainty of
actors, whereby each participant to a transaction is asked to
prepare to commit, and if the participant is prepared, the
participant indicates readiness, and if the participant indicates
a lack of readiness, the participant indicates non-readiness. If

US 9,342,274 B2

11

the participants are prepared then they are committed by
preparing for the transaction and guaranteeing the transaction
can move forward.

For instance, in the context of a release of a dependency or
reference to a COM object 920 represented in native code,
before memory 910 can be reclaimed, script object 900
releases its dependency on COM object 920, but follows a
two-phase commit communication in which a finalizer is
applied to script object 900 and COM object 920 to ask if
ready for release 940. If so, after confirming ready to commit,
the release 940 can proceed, however, if script object 900 or
COM object 920 is not ready to commit, the release 940 does
not move forward. The prepare and commit steps are logged
in order to allow for proper recovery of state and reference
counts held by the system. In various embodiments, the final-
izer support for COM objects is embodied in a garbage col-
lector that uses data structures to speed up COM memory
reclamation. In one embodiment, when the finalizer is called,
the finalizer can hold pointers to objects on its stack, and does
not reclaim the memory to the objects where the stack is being
scanned.

When a COM object is thus unreachable, a finalizer is
invoked that implements a two-phase commit process. As an
example, a script object have a dependency to a native object,
e.g., anative object such as a piece of a document represented
as anode in the document object model tree. The script object
obtains the reference, but once the native object is not reach-
able by the script engine, the finalizer can call back to the
native code to let it know to decrement its reference count as
part of finalization, which helps improve reference counting
across domains.

In this regard, with respect to application of the two-phase
commit protocol, when a host side is asked to prepare to
commit, the host side may not be ready to respond, in which
case the hose side can respond by asking not to proceed with
the transaction. For example, the host may have been given a
proxy so that the proxy represents that object, and so deletion
may not yet proceed.

When the participants are asked to “prepare”, the question
may be whether some memory can be reclaimed, or not.
When a participant commits, the transaction, such as recla-
mation of memory can proceed. If a participant cannot com-
mit, then, in this context, optionally, the host may ping the
script engine to determine readiness to delete. Another option
two-phase commit allows is that the host can clean up
resources associated with an object. That object might point
at stuff in the host, like an open file, and the host can try to
close the file, and if it can, states “go ahead and prepare,”
otherwise states to “wait” until it can.

Two-phase commit in this context helps to resolve circular
references by introducing finalizer support for COM objects
in a robust manner. Reference counting alone doesn’t handle
the resolution of circular references, whereas two-phase com-
mit prevents circular references from forming due to an
inability of a part of a system to deliver on a piece of a
transaction. In this regard, one side or the other, host or native,
can unilaterally break the transaction from proceeding. For
instance, the script side can say that the transaction will break,
and the native side can then make a choice as to either accept
that, or responsibility can be taken for breaking the transac-
tion. Two-phase commit protocol variants support a broad
class of techniques of one or the other side breaking the circle,
and handling the consequences.

FIG. 10 is a flow diagram illustrating an exemplary non-
limiting embodiment for applying a two phase commit pro-
cess in connection with the finalizer support provided for
COM objects according to an embodiment. At 1000, a request

10

15

20

25

30

35

40

45

50

55

60

65

12

is initiated to reclaim memory associated with a script code
object with a dependency to a component object model
(COM) object represented in native code. At 1010, the script
code object and the COM object are requested to prepare for
the request to reclaim the memory associated with the script
code object. At 1020, references of the COM object are
checked, e.g., determine an additional dependency of the
COM object that prevents the confirmation from the COM
object. Based on whether confirmation from the script code
object that the script code object is prepared for the request
and whether confirmation from the COM object that the
COM object is prepared for the request, the dependency can
be unwound and the memory associated with the script code
object can be reclaimed.

In one embodiment, the unwinding and the proceeding
adhere to a two-phase commit protocol with the requesting
corresponding to a prepare phase, and the unwinding and
proceeding corresponding to a commit phase. The initiating
the request can be to reclaim memory associated with the
script code object having a pointer to the COM object. The
unwinding of'the dependency can include releasing the COM
object or decrementing a reference count associated with the
COM object.

The checking of references of the COM object can include
determining an additional dependency of the COM object
that prevents the confirmation from the COM object.
Exemplary Networked and Distributed Environments

One of ordinary skill in the art can appreciate that the
various embodiments for dynamic code generation and
memory management for COM objects described herein can
be implemented in connection with any computer or other
client or server device, which can be deployed as part of a
computer network or in a distributed computing environment,
and can be connected to any kind of data store. In this regard,
the various embodiments described herein can be imple-
mented in any computer system or environment having any
number of memory or storage units, and any number of appli-
cations and processes occurring across any number of storage
units. This includes, but is not limited to, an environment with
server computers and client computers deployed in a network
environment or a distributed computing environment, having
remote or local storage.

Distributed computing provides sharing of computer
resources and services by communicative exchange among
computing devices and systems. These resources and services
include the exchange of information, cache storage and disk
storage for objects, such as files. These resources and services
also include the sharing of processing power across multiple
processing units for load balancing, expansion of resources,
specialization of processing, and the like. Distributed com-
puting takes advantage of network connectivity, allowing
clients to leverage their collective power to benefit the entire
enterprise. In this regard, a variety of devices may have appli-
cations, objects or resources that may participate in the
mechanisms for dynamic code generation and memory man-
agement for COM objects as described for various embodi-
ments of the subject disclosure.

FIG. 11 provides a schematic diagram of an exemplary
networked or distributed computing environment. The dis-
tributed computing environment comprises computing
objects 1110, 1112, etc. and computing objects or devices
1120, 1122, 1124, 1126, 1128, etc., which may include pro-
grams, methods, data stores, programmable logic, etc., as
represented by applications 1130, 1132, 1134, 1136, 1138
and data store(s) 1140. It can be appreciated that computing
objects 1110, 1112, etc. and computing objects or devices
1120, 1122, 1124, 1126, 1128, etc. may comprise different

US 9,342,274 B2

13

devices, such as personal digital assistants (PDAs), audio/
video devices, mobile phones, MP3 players, personal com-
puters, laptops, etc.

Each computing object 1110, 1112, etc. and computing
objects or devices 1120, 1122, 1124, 1126, 1128, ctc. can
communicate with one or more other computing objects
1110, 1112, etc. and computing objects or devices 1120,
1122, 1124, 1126, 1128, etc. by way of the communications
network 1142, either directly or indirectly. Even though illus-
trated as a single element in FIG. 11, communications net-
work 1142 may comprise other computing objects and com-
puting devices that provide services to the system of FIG. 11,
and/or may represent multiple interconnected networks,
which are not shown. Each computing object 1110, 1112, etc.
or computing objector devices 1120,1122,1124,1126,1128,
etc. can also contain an application, such as applications
1130, 1132, 1134, 1136, 1138, that might make use of an AP,
or other object, software, firmware and/or hardware, suitable
for communication with or implementation of the techniques
for dynamic code generation and memory management for
COM objects provided in accordance with various embodi-
ments of the subject disclosure.

There are a variety of systems, components, and network
configurations that support distributed computing environ-
ments. For example, computing systems can be connected
together by wired or wireless systems, by local networks or
widely distributed networks. Currently, many networks are
coupled to the Internet, which provides an infrastructure for
widely distributed computing and encompasses many differ-
ent networks, though any network infrastructure can be used
for exemplary communications made incident to the systems
for dynamic code generation and memory management for
COM objects as described in various embodiments.

Thus, a host of network topologies and network infrastruc-
tures, such as client/server, peer-to-peer, or hybrid architec-
tures, can be utilized. The “client” is a member of a class or
group that uses the services of another class or group to which
it is not related. A client can be a process, i.e., roughly a set of
instructions or tasks, that requests a service provided by
another program or process. The client process utilizes the
requested service without having to “know” any working
details about the other program or the service itself.

In a client/server architecture, particularly a networked
system, a client is usually a computer that accesses shared
network resources provided by another computer, e.g., a
server. In the illustration of FIG. 11, as a non-limiting
example, computing objects or devices 1120, 1122, 1124,
1126, 1128, etc. can be thought of as clients and computing
objects 1110, 1112, etc. can be thought of as servers where
computing objects 1110, 1112, etc., acting as servers provide
data services, such as receiving data from client computing
objects or devices 1120, 1122, 1124, 1126, 1128, etc., storing
of data, processing of data, transmitting data to client com-
puting objects or devices 1120, 1122, 1124, 1126, 1128, etc.,
although any computer can be considered a client, a server, or
both, depending on the circumstances.

A server is typically a remote computer system accessible
over a remote or local network, such as the Internet or wire-
less network infrastructures. The client process may be active
in a first computer system, and the server process may be
active in a second computer system, communicating with one
another over a communications medium, thus providing dis-
tributed functionality and allowing multiple clients to take
advantage of the information-gathering capabilities of the
server. Any software objects utilized pursuant to the tech-
niques described herein can be provided standalone, or dis-
tributed across multiple computing devices or objects.

10

15

20

25

30

35

40

45

50

55

60

65

14

In a network environment in which the communications
network 1142 or bus is the Internet, for example, the comput-
ing objects 1110, 1112, etc. can be Web servers with which
other computing objects or devices 1120, 1122, 1124, 1126,
1128, etc. communicate via any of a number of known pro-
tocols, such as the hypertext transfer protocol (HTTP). Com-
puting objects 1110, 1112, etc. acting as servers may also
serve as clients, e.g., computing objects or devices 1120,
1122, 1124, 1126, 1128, etc., as may be characteristic of a
distributed computing environment.

Exemplary Computing Device

As mentioned, advantageously, the techniques described
herein can be applied to any device where it is desirable to
perform dynamic code generation and memory management
for COM objects in a computing system. It can be understood,
therefore, that handheld, portable and other computing
devices and computing objects of all kinds are contemplated
for use in connection with the various embodiments, i.e.,
anywhere that resource usage of a device may be desirably
optimized. Accordingly, the below general purpose remote
computer described below in FIG. 12 is but one example of a
computing device.

Although not required, embodiments can partly be imple-
mented via an operating system, for use by a developer of
services for a device or object, and/or included within appli-
cation software that operates to perform one or more func-
tional aspects of the various embodiments described herein.
Software may be described in the general context of com-
puter-executable instructions, such as program modules,
being executed by one or more computers, such as client
workstations, servers or other devices. Those skilled in the art
will appreciate that computer systems have a variety of con-
figurations and protocols that can be used to communicate
data, and thus, no particular configuration or protocol should
be considered limiting.

FIG. 12 thus illustrates an example of a suitable computing
system environment 1200 in which one or aspects of the
embodiments described herein can be implemented, although
as made clear above, the computing system environment
1200 is only one example of a suitable computing environ-
ment and is not intended to suggest any limitation as to scope
of'use or functionality. Neither should the computing system
environment 1200 be interpreted as having any dependency
or requirement relating to any one or combination of compo-
nents illustrated in the exemplary computing system environ-
ment 1200.

With reference to FIG. 12, an exemplary remote device for
implementing one or more embodiments includes a general
purpose computing device in the form of a computer 1210.
Components of computer 1210 may include, but are not lim-
ited to, a processing unit 1220, a system memory 1230, and a
system bus 1222 that couples various system components
including the system memory to the processing unit 1220.

Computer 1210 typically includes a variety of computer
readable media and can be any available media that can be
accessed by computer 1210. The system memory 1230 may
include computer storage media in the form of volatile and/or
nonvolatile memory such as read only memory (ROM) and/or
random access memory (RAM). By way of example, and not
limitation, system memory 1230 may also include an operat-
ing system, application programs, other program modules,
and program data. According to a further example, computer
1210 can also include a variety of other media (not shown),
which can include, without limitation, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disk (DVD) or other optical disk stor-
age, magnetic cassettes, magnetic tape, magnetic disk storage

US 9,342,274 B2

15

or other magnetic storage devices, or other tangible and/or
non-transitory media which can be used to store desired infor-
mation.

A user can enter commands and information into the com-
puter 1210 through input devices 1240. A monitor or other
type of display device is also connected to the system bus
1222 via an interface, such as output interface 1250. In addi-
tion to a monitor, computers can also include other peripheral
output devices such as speakers and a printer, which may be
connected through output interface 1250.

The computer 1210 may operate in a networked or distrib-
uted environment using logical connections, such as network
interfaces 1260, to one or more other remote computers, such
as remote computer 1270. The remote computer 1270 may be
a personal computer, a server, a router, a network PC, a peer
device or other common network node, or any other remote
media consumption or transmission device, and may include
any or all of the elements described above relative to the
computer 1210. The logical connections depicted in FIG. 12
include a network 1272, such local area network (LAN) or a
wide area network (WAN), but may also include other net-
works/buses. Such networking environments are common-
place in homes, offices, enterprise-wide computer networks,
intranets and the Internet.

As mentioned above, while exemplary embodiments have
been described in connection with various computing devices
and network architectures, the underlying concepts may be
applied to any network system and any computing device or
system.

In addition, there are multiple ways to implement the same
or similar functionality, e.g., an appropriate API, tool kit,
driver code, operating system, control, standalone or down-
loadable software object, etc. which enables applications and
services to take advantage of the techniques provided herein.
Thus, embodiments herein are contemplated from the stand-
point of an API (or other software object), as well as from a
software or hardware object that implements one or more
embodiments as described herein. Thus, various embodi-
ments described herein can have aspects that are wholly in
hardware, partly in hardware and partly in software, as well as
in software.

The word “exemplary” is used herein to mean serving as an
example, instance, or illustration. For the avoidance of doubt,
the subject matter disclosed herein is not limited by such
examples. In addition, any aspect or design described herein
as “exemplary” is not necessarily to be construed as preferred
or advantageous over other aspects or designs, nor is it meant
to preclude equivalent exemplary structures and techniques
known to those of ordinary skill in the art. Furthermore, to the
extent that the terms “includes,” “has,” “contains,” and other
similar words are used, for the avoidance of doubt, such terms
are intended to be inclusive in a manner similar to the term
“comprising” as an open transition word without precluding
any additional or other elements.

As mentioned, the various techniques described herein
may be implemented in connection with hardware or soft-
ware or, where appropriate, with a combination of both. As
used herein, the terms “component,” ““system” and the like are
likewise intended to refer to a computer-related entity, either
hardware, a combination of hardware and software, software,
or software in execution. For example, a component may be,
but is not limited to being, a process running on a processor,
a processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on computer and the computer can be a
component. One or more components may reside within a

10

15

20

25

30

35

40

45

50

55

60

65

16

process and/or thread of execution and a component may be
localized on one computer and/or distributed between two or
more computers.

The aforementioned systems have been described with
respect to interaction between several components. It can be
appreciated that such systems and components can include
those components or specified sub-components, some of the
specified components or sub-components, and/or additional
components, and according to various permutations and com-
binations of the foregoing. Sub-components can also be
implemented as components communicatively coupled to
other components rather than included within parent compo-
nents (hierarchical). Additionally, it can be noted that one or
more components may be combined into a single component
providing aggregate functionality or divided into several
separate sub-components, and that any one or more middle
layers, such as a management layer, may be provided to
communicatively couple to such sub-components in order to
provide integrated functionality. Any components described
herein may also interact with one or more other components
not specifically described herein but generally known by
those of skill in the art.

In view of the exemplary systems described supra, meth-
odologies that may be implemented in accordance with the
described subject matter can also be appreciated with refer-
ence to the flowcharts of the various figures. While for pur-
poses of simplicity of explanation, the methodologies are
shown and described as a series of blocks, it is to be under-
stood and appreciated that the various embodiments are not
limited by the order of the blocks, as some blocks may occur
in different orders and/or concurrently with other blocks from
what is depicted and described herein. Where non-sequential,
or branched, flow is illustrated via flowchart, it can be appre-
ciated that various other branches, flow paths, and orders of
the blocks, may be implemented which achieve the same or a
similar result. Moreover, not all illustrated blocks may be
required to implement the methodologies described herein-
after.

In addition to the various embodiments described herein, it
is to be understood that other similar embodiments can be
used or modifications and additions can be made to the
described embodiment(s) for performing the same or equiva-
lent function of the corresponding embodiment(s) without
deviating there from. Still further, multiple processing chips
or multiple devices can share the performance of one or more
functions described herein, and similarly, storage can be
effected across a plurality of devices. Accordingly, the inven-
tion should not be limited to any single embodiment, but
rather should be construed in breadth, spirit and scope in
accordance with the appended claims.

What is claimed is:

1. A method, comprising:

receiving, by a browser application of a computing device,
script code including receiving code representing a com-
ponent object model (COM) object;

generating a prototype of the COM object including gen-
erating a type representation including at least one
dynamic type associated with the COM object;

by a marshaling component of the computing device, prior
to a request for native code representing the COM
object, in response to identifying a request for at least
one intermediate data structure, dynamically generate
the at least one intermediate data structure tailored for
dynamic COM object translation between the script
code and the native code, the at least one intermediate

US 9,342,274 B2

17

data structure generated based on the at least one
dynamic type associated with the prototype of the COM
object; and

in response to the request for native code representing the
COM object, marshaling, by the marshaling component
of'the computing device, the code representing the COM
object to the native code based on the at least one inter-
mediate data construct.

2. The method of claim 1, further comprising:

by the marshaling component of the computing device,
retrieving the at least one intermediate data structure
from a cache memory in response to identifying the
request for the at least one intermediate data structure.

3. The method of claim 1, further comprising:

by the marshaling component of the computing device,
accessing the at least one intermediate data structure
from a pre-stored set of intermediate data structures
previously generated based on the script code.

4. The method of claim 1, further comprising:

generating a virtual table based on a type of the at least one
dynamic type; and

caching the virtual table generated for the type for re-use.

5. The method of claim 1, further comprising:

determining that a virtual table for a given type of the at
least one dynamic type is not pre-stored; and

dynamically generating the virtual table for handling the
marshaling in response to the determining that the vir-
tual table is not pre-stored.

6. The method of claim 1, further comprising:

determining that a virtual table for a given type of the at
least one dynamic type is pre-stored; and

accessing the virtual table for handling the marshaling in
response to the determining that the virtual table is pre-
stored.

7. A computing device, comprising:

a memory having computer executable components stored
thereon; and

a processor communicatively coupled to the memory, the
processor configured to facilitate execution of the com-
puter executable components, the computer executable
components comprising:

a browser component configured to receive script code
including code representing a component object model
(COM) object; and

a marshaling component configured to, prior to a request
for native code representing the COM object, in
response to identifying a request for a pre-constructed
intermediate data structure, dynamically generate the
pre-constructed intermediate data structure tailored for
dynamic COM object translation between the script
code and the native code, the pre-constructed interme-
diate data structure generated based on a dynamic type
associated with a prototype of the COM object, the
marshaling component further configured to marshal,
based on the request for native code representing the
COM object, the code representing the COM object to
the native code based on the pre-constructed intermedi-
ate data structure of a set intermediate data structures,
the pre-constructed intermediate data structure cached
for re-use by the marshaling component.

8. The computing device of claim 7, wherein the marshal-
ing component is further configured to dynamically generate
at least one other intermediate data structure of the set of
intermediate data structures based on a request for the at least
one other intermediate data structure in response to the at least
one other intermediate data structure not being cached for
re-use.

25

30

45

50

55

60

18

9. The computing device of claim 8, wherein the marshal-
ing component is further configured to cache the at least one
other intermediate data structure for further re-use.

10. The computing device of claim 8, wherein the marshal-
ing component is further configured to generate a virtual table
based on a type of the at least one dynamic type and cache the
virtual table for re-use.

11. The computing device of claim 8 wherein the marshal-
ing component is further configured to determine that a vir-
tual table for a given type of the at least one dynamic type is
not pre-stored and dynamically generate the virtual table in
response to a determination that the virtual table is not pre-
stored.

12. The computing device of claim 8, wherein the marshal-
ing component is further configured to determine that a vir-
tual table for a given type of the at least one dynamic type is
pre-stored and access the virtual table in response to a deter-
mination that the virtual table is pre-stored.

13. A computer-readable storage memory comprising
computer-readable instructions that, in response to execution
by a computing system, cause the computing device includ-
ing at least one processor to perform operations, comprising:

receive, by a browser application of a computing device,

script code including receiving code representing a com-
ponent object model (COM) object;

generate a prototype of the COM object including gener-

ating a type representation including at least one
dynamic type associated with the COM object;

by a marshaling component of the computing device, prior

to a request for native code representing the COM
object, in response to identifying a request for at least
one intermediate data structure, dynamically generate
the at least one intermediate data structure tailored for
dynamic COM object translation between the script
code and the native code, the at least one intermediate
data structure generated based on the at least one
dynamic type associated with the prototype of the COM
object; and

in response to a request for native code representing the

COM object, marshal, by the marshaling component of
the computing device, the code representing the COM
object to the native code based on the at least one inter-
mediate data construct.

14. The computer-readable storage memory of claim 13,
further comprising:

by the marshaling component of the computing device,

access the at least one intermediate data structure from a
pre-stored set of intermediate data structures previously
generated based on the script code.

15. The computer-readable storage memory of claim 13,
further comprising:

generate a virtual table based on a type of the at least one

dynamic type; and

cache the virtual table generated for the type for re-use.

16. The computer-readable storage memory of claim 13,
further comprising:

determine that a virtual table for a given type of the at least

one dynamic type is not pre-stored; and

dynamically generate the virtual table for handling the

marshaling in response to the determining that the vir-
tual table is not pre-stored.

17. The computer-readable storage memory of claim 13,
further comprising:

determine that a virtual table for a given type of the at least

one dynamic type is pre-stored; and

access the virtual table for handling the marshaling in

response to the determining that the virtual table is pre-
stored.

